QuickRank: a C++ Suite of Learning to Rank Algorithms

Gabriele Capannini, Domenico Dato, Claudio Lucchese, Monica Mori, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Salvatore Orlando
Introduction

• **Learning to Rank**: machine learning techniques for ranking Web documents
 - *relevance* estimation in response to a given query
 - huge collections of annotated query-documents examples

• **Aim**: to *learn* “the best” ranking function from examples to be exploited in a ranking architecture

• **State of the art**: additive ensembles of tree-based rankers [1]

Machine-learned Ranking Architectures
Machine-learned Ranking Architectures

• candidate retrieval:
 • BM25 or a first “light” machine-learned ranker:
 • recall of positive examples
 • fast but less effective

• candidate re-ranking:
 • top-K documents
 • precision!
 • thousands of trees
Features

- **Query**: query length, frequency, category, etc.
- **Document**: document length, category, n. links, etc.
- **Statistical**: # of query terms in doc, # docs containing terms, document's length.
- **Proximity**: word-wise distance between query terms.
- **Link**: Hub, Authority, PageRank, etc.
- **Spam**: link and content spam features.
- **Click**: # of click (as a measure of importance of a page);
- **Demographics**: gender, age, location, etc.
- **Session**: last issued queries, last clicked documents, click rate, etc.
QuickRank

- A suite for **efficient** and **effective** Learning to Rank
- Three tree-based Learning to Rank algorithms:
 - Gradient-Boosted Regression Trees (GBRT) [1]
 - LambdaMART (LMART) [2]
 - Oblivious-LambdaMART (OLMART) [3]

Why QuickRank?

• learning tree-based rankers is **expensive**

 • **learning time**: (tens of) thousands of trees

 • iterative process, one tree per iteration

 • for each node in the tree:

 • find best feature/value for splitting

 • available implementations: RankLib, JForest are slow!

• **scoring time**: (tens of) thousands of trees
QuickRank

• QuickRank allows:
 • to learn ranking models from huge training datasets
 • to easily develop new Learning to Rank algorithms
 • to fairly test and compare the efficiency and effectiveness of the learnt ranking model
QuickRank

- QuickRank is:
 - written in C++, uses OpenMP
 - designed to be **flexible** and **extensible**
 - GBRT, LMART, OLMART
 - MAP, DCG, NDCG
 - released under RPL v1.5 licence
 - suitable for research purposes
Experiments

- **Dataset**: Yahoo! Learning to Rank challenge (set 1)
 - 19,944 queries for training
 - 2,994 queries for validation
 - 6,983 queries for testing
 - 700 features per query/document pair
 - 473,134 training samples in total

http://learningtorankchallenge.yahoo.com
Experiments

• Analysis of the **learning time**

 • LMART, 1,000 trees

 • 16 leaves per tree

 • NDCG@10

• Platform:

 • 2 AMD Opteron™ 6276 (32 cores in total)

 • 128 GiB RAM

 • Ubuntu 14.04 LTS, GCC 4.9.2
Experiments

<table>
<thead>
<tr>
<th># Threads</th>
<th>100%</th>
<th>50%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>363</td>
<td>192</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>114</td>
<td>63</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>71</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>51</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>32</td>
<td>41</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Threads</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>32</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

- 41 minutes to learn a LMART with 1,000 trees
- RankLib [1] v2.2 takes 2.4 hours on the same platform

Conclusions

• **QuickRank** is a parallel C++ suite of Learning to Rank algorithms

 • efficient, flexible and easy to extend

 • suitable for research and industry purposes

• **Coming soon:**

 • QuickScorer: a Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (to appear @ ACM SIGIR 2015)

 • QuickRank on the Cloud: Amazon EC2
Thank You!

quickrank@isti.cnr.it
http://quickrank.isti.cnr.it/

Questions?