
Representation of Word Sentiment, Idioms and Senses 

Giuseppe Attardi 

Dipartimento di Informatica 

Università di Pisa 

Largo B. Pontecorvo, 3 

I-56127 Pisa, Italy 

attardi@di.unipi.it 

Abstract. Distributional Semantic Models (DSM) that represent words as 

vectors of weights over a high dimensional feature space have proved very ef-

fective in representing semantic or syntactic word similarity. For certain tasks 

however it is important to represent contrasting aspects such as polarity, differ-

ent senses or idiomatic use of words. We present two methods for creating em-

beddings that take into account such characteristics: a feed-forward neural net-

work for learning sentiment specific and a skip-gram model for learning sense 

specific embeddings. Sense specific embeddings can be used to disambiguate 

queries and other classification tasks. We present an approach for recognizing 

idiomatic expressions by means of the embeddings. This can be used to seg-

ment queries into meaningful chunks. The implementation is available as a li-

brary implemented in Python with core numerical processing written in C++, 

using a parallel linear algebra library for efficiency and scalability. 

1 Introduction 

Distributional Semantic Models (DSM) that represent words as vectors of weights 

over a high dimensional feature space [12], have proved very effective in representing 

semantic or syntactic aspects of lexicon. Incorporating such representations has al-

lowed improving many natural language tasks. They also reduce the burden of feature 

selection since these models can be learned through unsupervised techniques from 

plain text. 

Deep learning algorithms for NLP tasks exploit distributional representation of 

words. In tagging applications such as POS tagging, NER tagging and Semantic Role 

Labeling (SRL), this has proved quite effective in reaching state of art accuracy and 

reducing reliance on manually engineered feature selection [8]. 

Word embeddings have been exploited also in constituency parsing [8] and de-

pendency parsing [4]. Blanco et al. [3] exploit word embeddings for identifying enti-

ties in web search queries. 

This paper presents DeepNL, an NLP pipeline based on a common Deep Learning 

architecture: it consists of tools for creating embeddings, and tools that exploit word 

embeddings as features. The current release includes a POS tagger, a NER, an SRL 

tagger and a dependency parser. 
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Two methods are supported for creating embeddings: an approach that uses neural 

network and one using Hellinger PCA [14]. 

2 Building Word Embeddings 

Word embeddings provide a low dimensional dense vector space representation for 

words, where values in each dimension may represent syntactic or semantic proper-

ties. 

DeepNL provides two methods for building embeddings, one is based on the use of 

a neural language model, as proposed by [25, 8, 17] and one based on spectral method 

as proposed by Lebret and Collobert [14]. 

The neural language method can be hard to train and the process is often quite time 

consuming, since several iterations are required over the whole training set. Some 

researcher provide precomputed embeddings for English
1
. The Polyglot project [1] 

makes available embeddings for several languages, built from the plain text of Wik-

ipedia in the respective language, and the Python code for computing them
2
, that sup-

ports GPU computations by means of Theano
3
. 

Mikolov et al. [19] developed an alternative solution for computing word embed-

dings, which significantly reduces the computational costs. They propose two log-

linear models, called bag of words and skip-gram model. The bag-of-word approach 

is similar to a feed-forward neural network language model and learns to classify the 

current word in a given context, except that instead of concatenating the vectors of the 

words in the context window of each token, it just averages them, eliminating a net-

work layer and reducing the data dimensions. The skip-gram model tries instead to 

estimate context words based on the current word. Further speed up in the computa-

tion is obtained by exploiting a mini-batch Asynchronous Stochastic Gradient De-

scent algorithm, splitting the training corpus into partitions and assigning them to 

multiple threads. An optimistic approach is also exploited to avoid synchronization 

costs: updates to the current weight matrix are performed concurrently, without any 

locking, assuming that updates to the same rows of the matrix will be infrequent and 

will not harm convergence. 

The authors published single-machine multi-threaded C++ code for computing the 

word vectors
4
. A reimplementation of the algorithm in Python is included in the Gen-

ism library [22]. In order to obtain comparable speed to the C++ version, they use 

Cython for interfacing to a coding in C of the core function for training the network 

on a single sentence, which in turn exploits the BLAS library for algebraic computa-

tions. 

                                                           
1 http://ronan.collobert.com/senna/, http://metaoptimize.com/projects/wordreprs/, 

http://www.fit.vutbr.cz/˜imikolov/rnnlm/, http://ai.stanford.edu/˜ehhuang/ 
2 https://bitbucket.org/aboSamoor/word2embeddings 
3 http://deeplearning.net/software/theano/ 
4 https://code.google.com/p/word2vec 
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2.1 Word Embeddings through Hellinger PCA 

Lebret and Collobert [14] have shown that embeddings can be efficiently computed 

from word co-occurence counts, applying Principal Component Analysis (PCA) to 

reduce dimensionality while optimizing the Hellinger similarity distance. 

Levy and Goldberg [15] have shown similarly that the skip-gram model by 

Mikolov et al. [19] can be interpreted as implicitly factorizing a word-context matrix, 

whose values are the pointwise mutual information (PMI) of the respective word and 

context pairs, shifted by a global constant.  

DeepNL provides an implementation of the Hellinger PCA algorithm using Cython 

and the LAPACK library SYSEVR. 

Co-occurrence frequencies are computed by counting the number of times each 

context word w  D occurs after a sequence of T words: 

𝑝(𝑤|𝑇) =
𝑝(𝑤, 𝑇)

𝑝(𝑇)
=

𝑛(𝑤, 𝑇)

∑ 𝑛(𝑤, 𝑇)𝑛

 

where n(w, T) is the number of times word w occurs after a sequence of T words. The 

set D of context word is normally chosen as the subset of the top most frequent words 

in the vocabulary V. 

The word co-occurrence matrix C of size |V||D| is built.  The coefficients of C 

are square rooted and then its transpose is multiplied by it to obtain a symmetric 

square matrix of size |V||V|, to which PCA is applied for obtaining the desired di-

mensionality reduction. 

2.2 Context Sensitive Word Embeddings 

The meaning of words often depends on their context. Our approach for learning 

word embeddings in context is inspired by the method for learning paragraph vectors 

[13]. We improve on their approach, avoiding the cost of computing at query time an 

embedding for the paragraph of the query. Our solution bears some resemblance to 

the approach in [11]. 

 
Figure 1. Overview of the model for context sensitive word embeddings. U and D 

are the matrices of weights to be learned. 
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Given a sequence of training words w1, w2, …, wT, the objective function to maximize 

is the negative log likelihood: 

∑ 𝑙𝑜𝑔 𝑝(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡+𝑘)

𝑇−𝑘

𝑡=𝑘

 

We add padding at sentence boundaries and substitute <UNK> for OOV words. 

The prediction task is performed by a neural network with a softmax layer: 

𝑝(𝑤𝑡|𝑤𝑡−𝑘 , … , 𝑤𝑡+𝑘) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑖

 

Each yi is the score for output word i, computed as: 

𝑦 = 𝑏 + 𝑈ℎ(𝑤𝑡−𝑘 , … , 𝑤𝑡+𝑘; 𝑊, 𝐷) 

where b, U are network parameters, W and D are the weight matrixes for words and 

paragraphs respectively. h concatenates the vectors of each word extracted from W 

and of their sum multiplied by D: 

ℎ(𝑖1, … , 𝑖𝑛; 𝑊, 𝐷) = 𝑊1|| … || 𝑊𝑛||𝐷 ∑ 𝑊𝑖

𝑛

𝑖

 

The combination of word vector and paragraph vector can be used for word sense 

disambiguation. A word ik within paragraph i1,…,in is represented by the concatena-

tion 

𝑊𝑖𝑘
||𝐷 ∑ 𝑊𝑖

𝑛

𝑖

 

2.3 Sentiment Specific Word Embeddings 

For the task of sentiment analysis, semantic similarity is not appropriate, since anto-

nyms end up at close distance in the embeddings space. One needs to learn a vector 

representation where words of opposite polarity are far apart. 

Tang et al. [24] propose an approach for learning sentiment specific word embed-

dings, by incorporating supervised knowledge of polarity in the loss function of the 

learning algorithm. The original hinge loss function in the algorithm by Collobert et 

al. [6] is: 

LCW(x, x
c
) = max(0, 1  f(x) + f(x

c
)) 

where x is an ngram and x
c
 is the same ngram corrupted by changing the target word 

with a randomly chosen one, f(·) is the feature function computed by the neural net-

work with parameters θ. The sentiment specific network outputs a vector of two di-

mensions, one for modeling the generic syntactic/semantic aspects of words and the 

second for modeling polarity. 

A second loss function is introduced as objective for minimization: 

LSS(x, x
c
) = max(0, 1  s(x) f(x)1 + s(x) f(x

c
)1) 



where the subscript in f(x)1 refers to the second element of the vector and s(x) is an 

indicator function reflecting the sentiment polarity of a sentence, whose value is 1 if 

the sentiment polarity of  x is positive and -1 if it is negative. 

The overall hinge loss is a linear combination of the two: 

L(x, x
c
) = LCW(x, x

c
) + (1 – ) LSS(x, x

c
) 

DeepNL provides an algorithm for training polarized embeddings, performing gradi-

ent descent using an adaptive learning rate according to the AdaGrad method. The 

algorithm requires a training set consisting of sentences annotated with their polarity, 

for example a corpus of tweets. The algorithm builds embeddings for both unigrams 

and ngrams at the same time, by performing variations on a training sentence replac-

ing not just a single word, but a sequence of words with either another word or anoth-

er ngram. 

3 Deep Learning Architecture 

DeepNL adopts a multi-layer neural network architecture, as proposed in [6], consist-

ing of five layers: a lookup layer, a linear layer, an activation layer (e.g. hardtanh), a 

second linear layer and a softmax layer. Overall, the network computes the following 

function: 

f(x) = softmax(M2 a(M1 x + b1) + b2) 

where M1  Rhd
, b1  Rd

, M2  Roh
, b2  Ro

, are the parameters, with d the di-

mension of the input, h the number of hidden units, o the number of output classes, 

a() is the activation function. 

3.1 Lookup layer 

The first layer of the network transforms the input into a feature vector representation. 

Individual words are represented by a vector of features, which is trained by back-

propagation. 

For each word w  D, an internal d-dimensional feature vector representation is 

given by the lookup table layer LTW(·): 

𝐿𝑇𝑊(𝑤) =  〈𝑊〉𝑤
1  

where 𝑊 ∈ ℝ𝑑×|𝒟|is a matrix of parameters to be learned, 〈𝑊〉𝑤
1 ∈ 𝒟 is the wth column 

of W and d is the word vector size (a hyper-parameter to be chosen by the user). 

3.2 Discrete Features 

Besides word representations, a number of discrete features can be used. Each feature 

has its own lookup table 𝐿𝑇𝑊𝑘(∙) with parameters 𝑊𝑘 ∈  ℝ𝑑𝑘×|𝒟𝑘|, where Dk
 is the 



dictionary for the k-th feature and d
k
 is a user specified vector size. The input to the 

network becomes the concatenation of the vectors for all features: 

𝐿𝑇𝑊1(𝑤)𝐿𝑇𝑊2(𝑤) ⋯ 𝐿𝑇𝑊𝐾(𝑤) 

3.3 Sequence Taggers 

For sequence tagging, two approaches were proposed in [6], a window approach and a 

sentence approach. The window approach assumes that the tag of a word depends 

mainly on the neighboring words, and is suitable for tasks like POS and NE tagging. 

The sentence approach assumes that the whole sentence must be taken into account by 

adding a convolution layer after the first lookup layer and is more suitable for tasks 

like SRL. 

We can train a neural network to maximize the log-likelihood over the training da-

ta. Denoting by  the trainable parameters of the network, we want to maximize the 

following log-likelihood with respect to : 

∑ log 𝑝(𝑡𝑖|𝑐𝑖 , 𝜃)

𝑖

 

The score s(w, t, ) of a sequence of tags t for a sentence w, with parameters , is giv-

en by the sum of the transition scores and the tree scores: 

𝑠(𝑥, 𝑡, 𝜃) = ∑(𝑇(𝑡𝑖−1, 𝑡𝑖) + 𝑓𝜃(𝑥𝑖 , 𝑡𝑖))

𝑛

𝑖=1

 

where T(i, j) is the score for the transition from tag i to tag j, and f(xi, ti) is the output 

of the network at word xi with tag t,. The probability of a sequence y for sentence x 

can be expressed as: 

𝑝(𝑦|𝑥, 𝜃) =
𝑒𝑠(𝑥,𝑦,𝜃)

∑ 𝑒𝑠(𝑥,𝑡,𝜃)
𝑡

 

3.4 Experiments 

We tested the DeepNL sequence tagger on the CoNLL 2003 challenge
5
, a NER 

benchmark based on Reuters data. The tagger was trained with three types of features: 

word embeddings from SENNA, a “caps” feature telling whether a word is in lower-

case, uppercase, title case, or had at least one non-initial capital letter, and a gazetteer 

feature, based on the list provided by the organizers. The window size was set to 5, 

300 hidden variables were used and training was iterated for 40 epochs. In the follow-

ing table we report the scores compared with the system by Ando et al. [2] which uses 

a semi-supervised approach and with the results by the released version of SENNA
6
: 

                                                           
5 http://www.cnts.ua.ac.be/conll2003/ner/ 
6 http://ml.nec-labs.com/senna/ 



Approach F1 

Ando et al. 2005 89.31 

SENNA 89.51 

DeepNL 89.38 

The slight difference with SENNA is possibly due to the use of different suffixes. 

4 Software Architecture 

The DeepNL implementation is written in Cython and uses C++ code which exploits 

the Eigen
7
 library for efficient parallel linear algebra computations. Data is exchanged 

between Numpy arrays in Python and Eigen matrices by means of Eigen Map types. 

On the Cython side, a pointer to the location where the data of a Numpy array is 

stored is obtained with a call like: 

<FLOAT_t*>np.PyArray_DATA(self.nn.hidden_weights) 

and passed to a C++ method. On the C++ side this is turned into an Eigen matrix, 

with no computational costs due to conversion or allocation, with the code: 

Map<Matrix> hidden_weights(hidden_weights, numHidden, numInput) 

which interprets the pointer to a double as a matrix with numHidden rows and nu-

mInput columns. 

4.1 Feature Extractors 

The library has a modular architecture that allows customizing a network for specific 

tasks, in particular its first layer, by supplying extractors for various types of features. 

An extractor is defined as a class that inherits from an abstract class with the fol-

lowing interface: 

class Extractor(object): 

   def extract(self, tokens) 

   def lookup(self, feature) 

   def save(self, file) 

   def load(self, file) 

Method extract, applied to a list of tokens, extracts features from each token and 

returns a list of IDs for those features. Method lookup returns the vector of weights 

for a given feature. Methods save/load allow saving and reloading the Extractor 

data to/from disk. 

Extractors currently include an Embeddings extractor, implementing the word 

lookup feature, a Caps, Prefix and Postfix extractor for dealing with capitaliza-

                                                           
7 http://eigen.tuxfamily.org/ 



tion and prefix/postfix features, a Gazetteer extractor for dealing with the gazetteers 

typically used in a NER, and a customizable AttributeFeature extractor that ex-

tracts features from the state of a Shift/Reduce dependency parser, i.e. from the tokens 

in the stack or buffer as described for example in [20]. 

4.2 Parallel gradient computation 

The computation of the gradients during network training requires computing the 

conditional probability over all possible sequences of tags, which grow exponentially 

with the length of the sequence. They can however be computed in linear time by 

accumulating them in a matrix, and then the matrix computation can be parallelized, 

as in the following code: 

delta = scores 

delta[0] += transitions[-1] 

tr = transitions[:-1] 

for i in xrange(1, len(delta)): 

   # sum by columns 

   logadd = logsumexp(delta[i-1][:,newaxis] + tr, 0) 

   delta[token] += logadd 

The array scores[i, j] contains the output of the neural network for the i-th ele-

ment of the sequence and for tag j, delta[i, j] represents the sum of all scores 

ending at the i-th token with tag j; transitions[i, j] contains the current esti-

mate of the probability of a transition from tag i to tag j. 

The computation can be optimized and parallelized using suitable linear algebra li-

braries. We implemented two versions of the network trainer, one in Python using 

NumPy
8
 and one in C++ using Eigen

9
. 

5 Identification of Idiomatic Multiword Expressions 

As an application of word embeddings, we experiment on the identification of idio-

matic multiword expressions. 

Multiword expressions are combinations of two or more words which can be syn-

tactically and/or semantically idiosyncratic in nature. There are many varieties of 

multiword expressions: we concentrate on non-decomposable idioms, i.e. those idi-

oms in which the meaning cannot be assigned to the parts of the MWE. 

MWE identification is typically split into two phases: candidate identification and 

filtering. 

For identifying potential candidates for MWE one can exploit the technique for 

discovering collocations [5] based on Pointwise Mutual Information. 

                                                           
8 http://www.numpy.org/ 
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We adopt the simple variant proposed by Mikolov et al. (2013a), of computing a 

score for the likelihood of forming a collocation, using the unigram and bigram 

counts: 

𝑠𝑐𝑜𝑟𝑒(𝑤𝑖 , 𝑤𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖 , 𝑤𝑗) − 𝛿

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖)  ∙  𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)
 

The bigrams with score above a chosen threshold are then used as phrases. The  is a 

discounting coefficient and prevents generating too many phrases consisting of very 

infrequent words. We also apply a cutoff on the frequency of bigrams, to avoid de-

pending too much on the frequency of the individual words and in particular to limit 

the tendency of assigning higher scores to lower frequency words. 

The process is repeated a few times by replacing the bigrams with a single token 

and decreasing the threshold value, in order to extract longer phrases. 

As many have noted [16], just relying on statistical measures of frequency for iden-

tifying MWEs does not achieve very satisfactory results, since idiomatic phrases are 

not that much frequent in texts, hence data is sparse; therefore some sort of semantic 

knowledge is required. 

Srivastava and Hovy [23] introduce a segmentation model for partitioning a sen-

tence into linear constituents, called motifs, which is learned though semi-supervised 

learning. They then build embeddings for such motifs using the Hellinger PCA tech-

nique of Lebret and Collobert [14]. 

For deciding whether a candidate collocation is indeed a phraseme, we rely on the 

distinctive properties of idiomatic expressions: non-composability, i.e. their meaning 

is not obtainable as a composition of the meaning of its part; non-substitutivity, i.e. 

replacing near-synonyms for the parts of a phrase would produce something weird or 

nonsensical. 

We assume that these two aspects should be fairly evident to the reader, otherwise 

he would not be able to distinguish a phraseme from a normal phrasal combination. 

Therefore, if we replace some of the words in the expression with similar words, we 

should end up with an apparently weird combination. 

The basic idea in our experiments is to select replacement words that are similar 

according to their distance in the word embedding space. As a criterion for deciding if 

a phrase is unusual, we check first if no variant occurs in the corpus, otherwise we 

check whether the LM probability of all variants is below a given threshold. 

5.1 Experiments 

We carried out experiments on the corpus consisting of the plain text extracted from 

the English Wikipedia, for a total of 1,096,243,235 tokens, 4,456,972 distinct. 

We created word embeddings on the corpus obtained by performing token combi-

nations as described above, using a threshold of 500 on the first iteration and 300 on 

the following ones. We used a cutoff of 80 on the first iteration and 40 on the follow-

ing ones. The vocabulary for this corpus consists of 225,000 words or phrases. 



For evaluating our model, we used the WikiMwe corpus [10], which includes a 

gold evaluation set consisting of 2,500 expressions, annotated in four categories: non-

compositional, collocation, regular natural language phrase and ungrammatical. Table 

2 shows the results of our experiments. 

Type Precision Recall F1 

MWE 53.61 58.73 55.05 

Regular 51.36 66.60 58.00 

Ungrammatical 5.48 40.00 9.64 

The results are encouraging since the best level of accuracy reported in Vincze et al. 

[26] is 55.75% F1 for noun compounds. 

Table 2 shows a few examples of the output of our system on the WikiMwe test 

set. 

Phrase ngrams LM prob. type Correct 

dual gauge 232 -2.1 MWE yes 

art of being 0 -2.9 MWE yes 

protest against the war 0 -2.0 Colloc yes 

way to Damascus 0 -3.7 Colloc yes 

financial services 0 -1.8 Colloc. no 

androgenic alopecia 0 0.0 MWE yes 

Table 2.  Samples of phrases and types assigned by our system. 

An online demo of a similar system for the identification of Italian idiomatic phrases 

is available at: http://tanl.di.unipi.it/embeddings/mwe. 

A potential application of the technique is the identification of chunks in search 

queries or in AdWords queries, in order to recognize expression whose intended 

meaning does not correspond to the combination of the individual words in the query. 

6 Conclusions 

We have presented the architecture of DeepNL, a library for building NLP applica-

tions based on a deep learning architecture. 

The toolkit includes various methods for creating embedding, either generic em-

beddings and sentiment specific or context sensitive embeddings. 

As an example of the effectiveness of the embeddings, we have explored their use 

in the identification of idiomatic word expressions. 

The implementation is written in Python/Cython and uses C++ linear algebra li-

braries for efficiency and scalability, exploiting multithreading or GPUs where avail-

able. The code is available for download from: https://github.com/attardi/deepnl. 

Table 1. Results on the idetification of idiomatic expressions. 

http://tanl.di.unipi.it/embeddings/mwe
https://github.com/attardi/deepnl


There are several potential applications for the library, in particular sentiment spe-

cific word embeddings might be applied to other classification tasks, for example de-

tecting tweets that signal dangers or disasters. 

Context sensitive word embeddings can be exploited in artificial tasks like word 

sense disambiguation or word sense similarity. Hopefully they should provide also 

benefits for more relevant tasks such as relation extraction, negation identification, 

data linking, ontology creation. We hope that the availability of the code will encour-

age exploring their use in such applications. 
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