
Representation of Word Sentiment, Idioms and Senses

Giuseppe Attardi

Dipartimento di Informatica

Università di Pisa

Largo B. Pontecorvo, 3

I-56127 Pisa, Italy

attardi@di.unipi.it

Abstract. Distributional Semantic Models (DSM) that represent words as

vectors of weights over a high dimensional feature space have proved very ef-

fective in representing semantic or syntactic word similarity. For certain tasks

however it is important to represent contrasting aspects such as polarity, differ-

ent senses or idiomatic use of words. We present two methods for creating em-

beddings that take into account such characteristics: a feed-forward neural net-

work for learning sentiment specific and a skip-gram model for learning sense

specific embeddings. Sense specific embeddings can be used to disambiguate

queries and other classification tasks. We present an approach for recognizing

idiomatic expressions by means of the embeddings. This can be used to seg-

ment queries into meaningful chunks. The implementation is available as a li-

brary implemented in Python with core numerical processing written in C++,

using a parallel linear algebra library for efficiency and scalability.

1 Introduction

Distributional Semantic Models (DSM) that represent words as vectors of weights

over a high dimensional feature space [12], have proved very effective in representing

semantic or syntactic aspects of lexicon. Incorporating such representations has al-

lowed improving many natural language tasks. They also reduce the burden of feature

selection since these models can be learned through unsupervised techniques from

plain text.

Deep learning algorithms for NLP tasks exploit distributional representation of

words. In tagging applications such as POS tagging, NER tagging and Semantic Role

Labeling (SRL), this has proved quite effective in reaching state of art accuracy and

reducing reliance on manually engineered feature selection [8].

Word embeddings have been exploited also in constituency parsing [8] and de-

pendency parsing [4]. Blanco et al. [3] exploit word embeddings for identifying enti-

ties in web search queries.

This paper presents DeepNL, an NLP pipeline based on a common Deep Learning

architecture: it consists of tools for creating embeddings, and tools that exploit word

embeddings as features. The current release includes a POS tagger, a NER, an SRL

tagger and a dependency parser.

mailto:attardi@di.unipi.it

Two methods are supported for creating embeddings: an approach that uses neural

network and one using Hellinger PCA [14].

2 Building Word Embeddings

Word embeddings provide a low dimensional dense vector space representation for

words, where values in each dimension may represent syntactic or semantic proper-

ties.

DeepNL provides two methods for building embeddings, one is based on the use of

a neural language model, as proposed by [25, 8, 17] and one based on spectral method

as proposed by Lebret and Collobert [14].

The neural language method can be hard to train and the process is often quite time

consuming, since several iterations are required over the whole training set. Some

researcher provide precomputed embeddings for English
1
. The Polyglot project [1]

makes available embeddings for several languages, built from the plain text of Wik-

ipedia in the respective language, and the Python code for computing them
2
, that sup-

ports GPU computations by means of Theano
3
.

Mikolov et al. [19] developed an alternative solution for computing word embed-

dings, which significantly reduces the computational costs. They propose two log-

linear models, called bag of words and skip-gram model. The bag-of-word approach

is similar to a feed-forward neural network language model and learns to classify the

current word in a given context, except that instead of concatenating the vectors of the

words in the context window of each token, it just averages them, eliminating a net-

work layer and reducing the data dimensions. The skip-gram model tries instead to

estimate context words based on the current word. Further speed up in the computa-

tion is obtained by exploiting a mini-batch Asynchronous Stochastic Gradient De-

scent algorithm, splitting the training corpus into partitions and assigning them to

multiple threads. An optimistic approach is also exploited to avoid synchronization

costs: updates to the current weight matrix are performed concurrently, without any

locking, assuming that updates to the same rows of the matrix will be infrequent and

will not harm convergence.

The authors published single-machine multi-threaded C++ code for computing the

word vectors
4
. A reimplementation of the algorithm in Python is included in the Gen-

ism library [22]. In order to obtain comparable speed to the C++ version, they use

Cython for interfacing to a coding in C of the core function for training the network

on a single sentence, which in turn exploits the BLAS library for algebraic computa-

tions.

1 http://ronan.collobert.com/senna/, http://metaoptimize.com/projects/wordreprs/,

http://www.fit.vutbr.cz/˜imikolov/rnnlm/, http://ai.stanford.edu/˜ehhuang/
2 https://bitbucket.org/aboSamoor/word2embeddings
3 http://deeplearning.net/software/theano/
4 https://code.google.com/p/word2vec

http://ronan.collobert.com/senna/
http://metaoptimize.com/projects/wordreprs/

2.1 Word Embeddings through Hellinger PCA

Lebret and Collobert [14] have shown that embeddings can be efficiently computed

from word co-occurence counts, applying Principal Component Analysis (PCA) to

reduce dimensionality while optimizing the Hellinger similarity distance.

Levy and Goldberg [15] have shown similarly that the skip-gram model by

Mikolov et al. [19] can be interpreted as implicitly factorizing a word-context matrix,

whose values are the pointwise mutual information (PMI) of the respective word and

context pairs, shifted by a global constant.

DeepNL provides an implementation of the Hellinger PCA algorithm using Cython

and the LAPACK library SYSEVR.

Co-occurrence frequencies are computed by counting the number of times each

context word w  D occurs after a sequence of T words:

𝑝(𝑤|𝑇) =
𝑝(𝑤, 𝑇)

𝑝(𝑇)
=

𝑛(𝑤, 𝑇)

∑ 𝑛(𝑤, 𝑇)𝑛

where n(w, T) is the number of times word w occurs after a sequence of T words. The

set D of context word is normally chosen as the subset of the top most frequent words

in the vocabulary V.

The word co-occurrence matrix C of size |V||D| is built. The coefficients of C

are square rooted and then its transpose is multiplied by it to obtain a symmetric

square matrix of size |V||V|, to which PCA is applied for obtaining the desired di-

mensionality reduction.

2.2 Context Sensitive Word Embeddings

The meaning of words often depends on their context. Our approach for learning

word embeddings in context is inspired by the method for learning paragraph vectors

[13]. We improve on their approach, avoiding the cost of computing at query time an

embedding for the paragraph of the query. Our solution bears some resemblance to

the approach in [11].

Figure 1. Overview of the model for context sensitive word embeddings. U and D

are the matrices of weights to be learned.



U

D

wi-1 w
i
 w

i+1

score

Given a sequence of training words w1, w2, …, wT, the objective function to maximize

is the negative log likelihood:

∑ 𝑙𝑜𝑔 𝑝(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡+𝑘)

𝑇−𝑘

𝑡=𝑘

We add padding at sentence boundaries and substitute <UNK> for OOV words.

The prediction task is performed by a neural network with a softmax layer:

𝑝(𝑤𝑡|𝑤𝑡−𝑘 , … , 𝑤𝑡+𝑘) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑖

Each yi is the score for output word i, computed as:

𝑦 = 𝑏 + 𝑈ℎ(𝑤𝑡−𝑘 , … , 𝑤𝑡+𝑘; 𝑊, 𝐷)

where b, U are network parameters, W and D are the weight matrixes for words and

paragraphs respectively. h concatenates the vectors of each word extracted from W

and of their sum multiplied by D:

ℎ(𝑖1, … , 𝑖𝑛; 𝑊, 𝐷) = 𝑊1|| … || 𝑊𝑛||𝐷 ∑ 𝑊𝑖

𝑛

𝑖

The combination of word vector and paragraph vector can be used for word sense

disambiguation. A word ik within paragraph i1,…,in is represented by the concatena-

tion

𝑊𝑖𝑘
||𝐷 ∑ 𝑊𝑖

𝑛

𝑖

2.3 Sentiment Specific Word Embeddings

For the task of sentiment analysis, semantic similarity is not appropriate, since anto-

nyms end up at close distance in the embeddings space. One needs to learn a vector

representation where words of opposite polarity are far apart.

Tang et al. [24] propose an approach for learning sentiment specific word embed-

dings, by incorporating supervised knowledge of polarity in the loss function of the

learning algorithm. The original hinge loss function in the algorithm by Collobert et

al. [6] is:

LCW(x, x
c
) = max(0, 1  f(x) + f(x

c
))

where x is an ngram and x
c
 is the same ngram corrupted by changing the target word

with a randomly chosen one, f(·) is the feature function computed by the neural net-

work with parameters θ. The sentiment specific network outputs a vector of two di-

mensions, one for modeling the generic syntactic/semantic aspects of words and the

second for modeling polarity.

A second loss function is introduced as objective for minimization:

LSS(x, x
c
) = max(0, 1  s(x) f(x)1 + s(x) f(x

c
)1)

where the subscript in f(x)1 refers to the second element of the vector and s(x) is an

indicator function reflecting the sentiment polarity of a sentence, whose value is 1 if

the sentiment polarity of x is positive and -1 if it is negative.

The overall hinge loss is a linear combination of the two:

L(x, x
c
) = LCW(x, x

c
) + (1 – ) LSS(x, x

c
)

DeepNL provides an algorithm for training polarized embeddings, performing gradi-

ent descent using an adaptive learning rate according to the AdaGrad method. The

algorithm requires a training set consisting of sentences annotated with their polarity,

for example a corpus of tweets. The algorithm builds embeddings for both unigrams

and ngrams at the same time, by performing variations on a training sentence replac-

ing not just a single word, but a sequence of words with either another word or anoth-

er ngram.

3 Deep Learning Architecture

DeepNL adopts a multi-layer neural network architecture, as proposed in [6], consist-

ing of five layers: a lookup layer, a linear layer, an activation layer (e.g. hardtanh), a

second linear layer and a softmax layer. Overall, the network computes the following

function:

f(x) = softmax(M2 a(M1 x + b1) + b2)

where M1  Rhd
, b1  Rd

, M2  Roh
, b2  Ro

, are the parameters, with d the di-

mension of the input, h the number of hidden units, o the number of output classes,

a() is the activation function.

3.1 Lookup layer

The first layer of the network transforms the input into a feature vector representation.

Individual words are represented by a vector of features, which is trained by back-

propagation.

For each word w  D, an internal d-dimensional feature vector representation is

given by the lookup table layer LTW(·):

𝐿𝑇𝑊(𝑤) = 〈𝑊〉𝑤
1

where 𝑊 ∈ ℝ𝑑×|𝒟|is a matrix of parameters to be learned, 〈𝑊〉𝑤
1 ∈ 𝒟 is the wth column

of W and d is the word vector size (a hyper-parameter to be chosen by the user).

3.2 Discrete Features

Besides word representations, a number of discrete features can be used. Each feature

has its own lookup table 𝐿𝑇𝑊𝑘(∙) with parameters 𝑊𝑘 ∈ ℝ𝑑𝑘×|𝒟𝑘|, where Dk
 is the

dictionary for the k-th feature and d
k
 is a user specified vector size. The input to the

network becomes the concatenation of the vectors for all features:

𝐿𝑇𝑊1(𝑤)𝐿𝑇𝑊2(𝑤) ⋯ 𝐿𝑇𝑊𝐾(𝑤)

3.3 Sequence Taggers

For sequence tagging, two approaches were proposed in [6], a window approach and a

sentence approach. The window approach assumes that the tag of a word depends

mainly on the neighboring words, and is suitable for tasks like POS and NE tagging.

The sentence approach assumes that the whole sentence must be taken into account by

adding a convolution layer after the first lookup layer and is more suitable for tasks

like SRL.

We can train a neural network to maximize the log-likelihood over the training da-

ta. Denoting by  the trainable parameters of the network, we want to maximize the

following log-likelihood with respect to :

∑ log 𝑝(𝑡𝑖|𝑐𝑖 , 𝜃)

𝑖

The score s(w, t, ) of a sequence of tags t for a sentence w, with parameters , is giv-

en by the sum of the transition scores and the tree scores:

𝑠(𝑥, 𝑡, 𝜃) = ∑(𝑇(𝑡𝑖−1, 𝑡𝑖) + 𝑓𝜃(𝑥𝑖 , 𝑡𝑖))

𝑛

𝑖=1

where T(i, j) is the score for the transition from tag i to tag j, and f(xi, ti) is the output

of the network at word xi with tag t,. The probability of a sequence y for sentence x

can be expressed as:

𝑝(𝑦|𝑥, 𝜃) =
𝑒𝑠(𝑥,𝑦,𝜃)

∑ 𝑒𝑠(𝑥,𝑡,𝜃)
𝑡

3.4 Experiments

We tested the DeepNL sequence tagger on the CoNLL 2003 challenge
5
, a NER

benchmark based on Reuters data. The tagger was trained with three types of features:

word embeddings from SENNA, a “caps” feature telling whether a word is in lower-

case, uppercase, title case, or had at least one non-initial capital letter, and a gazetteer

feature, based on the list provided by the organizers. The window size was set to 5,

300 hidden variables were used and training was iterated for 40 epochs. In the follow-

ing table we report the scores compared with the system by Ando et al. [2] which uses

a semi-supervised approach and with the results by the released version of SENNA
6
:

5 http://www.cnts.ua.ac.be/conll2003/ner/
6 http://ml.nec-labs.com/senna/

Approach F1

Ando et al. 2005 89.31

SENNA 89.51

DeepNL 89.38

The slight difference with SENNA is possibly due to the use of different suffixes.

4 Software Architecture

The DeepNL implementation is written in Cython and uses C++ code which exploits

the Eigen
7
 library for efficient parallel linear algebra computations. Data is exchanged

between Numpy arrays in Python and Eigen matrices by means of Eigen Map types.

On the Cython side, a pointer to the location where the data of a Numpy array is

stored is obtained with a call like:

<FLOAT_t*>np.PyArray_DATA(self.nn.hidden_weights)

and passed to a C++ method. On the C++ side this is turned into an Eigen matrix,

with no computational costs due to conversion or allocation, with the code:

Map<Matrix> hidden_weights(hidden_weights, numHidden, numInput)

which interprets the pointer to a double as a matrix with numHidden rows and nu-

mInput columns.

4.1 Feature Extractors

The library has a modular architecture that allows customizing a network for specific

tasks, in particular its first layer, by supplying extractors for various types of features.

An extractor is defined as a class that inherits from an abstract class with the fol-

lowing interface:

class Extractor(object):

 def extract(self, tokens)

 def lookup(self, feature)

 def save(self, file)

 def load(self, file)

Method extract, applied to a list of tokens, extracts features from each token and

returns a list of IDs for those features. Method lookup returns the vector of weights

for a given feature. Methods save/load allow saving and reloading the Extractor

data to/from disk.

Extractors currently include an Embeddings extractor, implementing the word

lookup feature, a Caps, Prefix and Postfix extractor for dealing with capitaliza-

7 http://eigen.tuxfamily.org/

tion and prefix/postfix features, a Gazetteer extractor for dealing with the gazetteers

typically used in a NER, and a customizable AttributeFeature extractor that ex-

tracts features from the state of a Shift/Reduce dependency parser, i.e. from the tokens

in the stack or buffer as described for example in [20].

4.2 Parallel gradient computation

The computation of the gradients during network training requires computing the

conditional probability over all possible sequences of tags, which grow exponentially

with the length of the sequence. They can however be computed in linear time by

accumulating them in a matrix, and then the matrix computation can be parallelized,

as in the following code:

delta = scores

delta[0] += transitions[-1]

tr = transitions[:-1]

for i in xrange(1, len(delta)):

 # sum by columns

 logadd = logsumexp(delta[i-1][:,newaxis] + tr, 0)

 delta[token] += logadd

The array scores[i, j] contains the output of the neural network for the i-th ele-

ment of the sequence and for tag j, delta[i, j] represents the sum of all scores

ending at the i-th token with tag j; transitions[i, j] contains the current esti-

mate of the probability of a transition from tag i to tag j.

The computation can be optimized and parallelized using suitable linear algebra li-

braries. We implemented two versions of the network trainer, one in Python using

NumPy
8
 and one in C++ using Eigen

9
.

5 Identification of Idiomatic Multiword Expressions

As an application of word embeddings, we experiment on the identification of idio-

matic multiword expressions.

Multiword expressions are combinations of two or more words which can be syn-

tactically and/or semantically idiosyncratic in nature. There are many varieties of

multiword expressions: we concentrate on non-decomposable idioms, i.e. those idi-

oms in which the meaning cannot be assigned to the parts of the MWE.

MWE identification is typically split into two phases: candidate identification and

filtering.

For identifying potential candidates for MWE one can exploit the technique for

discovering collocations [5] based on Pointwise Mutual Information.

8 http://www.numpy.org/
9 http://eigen.tuxfamily.org/

We adopt the simple variant proposed by Mikolov et al. (2013a), of computing a

score for the likelihood of forming a collocation, using the unigram and bigram

counts:

𝑠𝑐𝑜𝑟𝑒(𝑤𝑖 , 𝑤𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖 , 𝑤𝑗) − 𝛿

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖) ∙ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)

The bigrams with score above a chosen threshold are then used as phrases. The  is a

discounting coefficient and prevents generating too many phrases consisting of very

infrequent words. We also apply a cutoff on the frequency of bigrams, to avoid de-

pending too much on the frequency of the individual words and in particular to limit

the tendency of assigning higher scores to lower frequency words.

The process is repeated a few times by replacing the bigrams with a single token

and decreasing the threshold value, in order to extract longer phrases.

As many have noted [16], just relying on statistical measures of frequency for iden-

tifying MWEs does not achieve very satisfactory results, since idiomatic phrases are

not that much frequent in texts, hence data is sparse; therefore some sort of semantic

knowledge is required.

Srivastava and Hovy [23] introduce a segmentation model for partitioning a sen-

tence into linear constituents, called motifs, which is learned though semi-supervised

learning. They then build embeddings for such motifs using the Hellinger PCA tech-

nique of Lebret and Collobert [14].

For deciding whether a candidate collocation is indeed a phraseme, we rely on the

distinctive properties of idiomatic expressions: non-composability, i.e. their meaning

is not obtainable as a composition of the meaning of its part; non-substitutivity, i.e.

replacing near-synonyms for the parts of a phrase would produce something weird or

nonsensical.

We assume that these two aspects should be fairly evident to the reader, otherwise

he would not be able to distinguish a phraseme from a normal phrasal combination.

Therefore, if we replace some of the words in the expression with similar words, we

should end up with an apparently weird combination.

The basic idea in our experiments is to select replacement words that are similar

according to their distance in the word embedding space. As a criterion for deciding if

a phrase is unusual, we check first if no variant occurs in the corpus, otherwise we

check whether the LM probability of all variants is below a given threshold.

5.1 Experiments

We carried out experiments on the corpus consisting of the plain text extracted from

the English Wikipedia, for a total of 1,096,243,235 tokens, 4,456,972 distinct.

We created word embeddings on the corpus obtained by performing token combi-

nations as described above, using a threshold of 500 on the first iteration and 300 on

the following ones. We used a cutoff of 80 on the first iteration and 40 on the follow-

ing ones. The vocabulary for this corpus consists of 225,000 words or phrases.

For evaluating our model, we used the WikiMwe corpus [10], which includes a

gold evaluation set consisting of 2,500 expressions, annotated in four categories: non-

compositional, collocation, regular natural language phrase and ungrammatical. Table

2 shows the results of our experiments.

Type Precision Recall F1

MWE 53.61 58.73 55.05

Regular 51.36 66.60 58.00

Ungrammatical 5.48 40.00 9.64

The results are encouraging since the best level of accuracy reported in Vincze et al.

[26] is 55.75% F1 for noun compounds.

Table 2 shows a few examples of the output of our system on the WikiMwe test

set.

Phrase ngrams LM prob. type Correct

dual gauge 232 -2.1 MWE yes

art of being 0 -2.9 MWE yes

protest against the war 0 -2.0 Colloc yes

way to Damascus 0 -3.7 Colloc yes

financial services 0 -1.8 Colloc. no

androgenic alopecia 0 0.0 MWE yes

Table 2. Samples of phrases and types assigned by our system.

An online demo of a similar system for the identification of Italian idiomatic phrases

is available at: http://tanl.di.unipi.it/embeddings/mwe.

A potential application of the technique is the identification of chunks in search

queries or in AdWords queries, in order to recognize expression whose intended

meaning does not correspond to the combination of the individual words in the query.

6 Conclusions

We have presented the architecture of DeepNL, a library for building NLP applica-

tions based on a deep learning architecture.

The toolkit includes various methods for creating embedding, either generic em-

beddings and sentiment specific or context sensitive embeddings.

As an example of the effectiveness of the embeddings, we have explored their use

in the identification of idiomatic word expressions.

The implementation is written in Python/Cython and uses C++ linear algebra li-

braries for efficiency and scalability, exploiting multithreading or GPUs where avail-

able. The code is available for download from: https://github.com/attardi/deepnl.

Table 1. Results on the idetification of idiomatic expressions.

http://tanl.di.unipi.it/embeddings/mwe
https://github.com/attardi/deepnl

There are several potential applications for the library, in particular sentiment spe-

cific word embeddings might be applied to other classification tasks, for example de-

tecting tweets that signal dangers or disasters.

Context sensitive word embeddings can be exploited in artificial tasks like word

sense disambiguation or word sense similarity. Hopefully they should provide also

benefits for more relevant tasks such as relation extraction, negation identification,

data linking, ontology creation. We hope that the availability of the code will encour-

age exploring their use in such applications.

Acknowledgements. Partial support for this work was provided by project RIS (POR RIS of

the Regione Toscana, CUP n° 6408.30122011.026000160).

7 References

1. R. Al-Rfou, B. Perozzi, and S. Skiena. 2013. Polyglot: Distributed Word Representations

for Multilingual NLP. arXiv preprint arXiv:1307.1662.

2. R. K. Ando, T. Zhang, and P. Bartlett. 2005. A framework for learning predictive struc-

tures from multiple tasks and unlabeled data. Journal of Machine Learning Research,

6:1817–1853.

3. Roi Blanco, Giuseppe Ottaviano, Edgar Meij, 2015. Fast and Space-efficient Entity Link-

ing in Queries, ACM WSDM 2015.

4. D. Chen and C. D. Manning. 2014. Fast and Accurate Dependency Parser using Neural

Networks. In: Proc. of EMNLP 2014.

5. K. Church and P. Hanks. 1990. Word association norms, mutual information, and lexicog-

raphy. Computational Linguistics. 16 (1): 22–29

6. R. Collobert et al. 2011. Natural Language Processing (Almost) from Scratch. Journal of

Machine Learning Research, 12, 2461–2505.

7. R. Collobert and J. Weston. 2008. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In ICML, 2008.

8. R. Collobert. 2011. Deep Learning for Efficient Discriminative Parsing. In AISTATS,

2011.

9. P. S. Dhillon, D. Foster, and L. Ungar. 2011. Multiview learning of word embeddings via

CCA. In Advances in Neural Information Processing Systems (NIPS), volume 24.

10. S. Hartmann, G. Szarvas, and I. Gurevych. 2011. Mining Multiword Terms from Wikipe-

dia, in M.T. Pazienza & A. Stellato (Eds.): Semi-Automatic Ontology Development: Pro-

cesses and Resources, pp. 226-258, Hershey, PA, USA: IGI Global.

11. Huang et al. 2012. Improving Word Representations via Global Context and Multiple

Word Prototypes, Proc. of the Association for Computational Linguistics 2012 Confer-

ence.

12. G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Distributed representations. 1986. In Par-

allel distributed processing: Explorations in the microstructure of cognition. Volume 1:

Foundations, MIT Press, 1986.

13. Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Docu-

ments. In Proceedings of the 31st International Conference on Machine Learning, Beijing,

China, 2014. JMLR:W&CP volume 32.

14. Rémi Lebret and Ronan Collobert. 2013. Word Embeddings through Hellinger PCA. Proc.

of EACL 2013.

15. Omer Levy and Yoav Goldberg. 2014. Neural Word Embeddings as Implicit Matrix Fac-

torization. In Advances in Neural Information Processing Systems (NIPS), 2014.

16. Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural

Language Processing. The MIT Press. Cambridge, Massachusetts.

17. T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and Sanjeev Khudanpur. 2010. Recurrent

neural network based language model. In INTERSPEECH 2010, 11th Annual Conference

of the International Speech Communication Association, Makuhari, Chiba, Japanfmikol.

18. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of

Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.

19. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Dis-

tributed Representations of Words and Phrases and their Compositionality. In Proceedings

of NIPS, 2013.

20. Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Com-

putational Linguistics, 34(4):513-553.

21. Carlos Ramisch, Aline Villavicencio, and Christian Boitet. 2010. Multiword expressions in

the wild? the mwetoolkit comes in handy. In Liu, Yang and Ting Liu, editors, Proc. of the

23rd COLING (COLING 2010) — Demonstrations, pages 57–60, Beijing, China.

22. Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, ELRA, Valletta, Malta, pp. 45–50.

23. S. Srivastava, E. Hovy. 2014. Vector space semantics with frequency-driven motifs. In

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,

634–643, Baltimore, Maryland, USA.

24. Tang et al. 2014. Learning Sentiment-SpecificWord Embedding for Twitter Sentiment

Classification. In Proceedings of the 52nd Annual Meeting of the Association for Compu-

tational Linguistics, pp. 1555–1565, Baltimore, Maryland, USA, June 23-25 2014.

25. Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a simple

and general method for semi-supervised learning. In Proceedings of the 48th annual meet-

ing of the association for computational linguistics, pp. 384-394. Association for Compu-

tational Linguistics.

26. Veronika Vincze, T. István Nagy, and Gábor Berend. 2011. Detecting noun compounds

and light verb constructions: a contrastive study. In Proceedings of the Workshop on Mul-

tiword Expressions: from Parsing and Generation to the Real World (MWE '11). Associa-

tion for Computational Linguistics, Stroudsburg, PA, USA, 116-121.

http://arxiv.org/pdf/1301.3781.pdf
http://arxiv.org/pdf/1301.3781.pdf

